



www.sdrl.com

(800) 677-7995

Volume 7, Issue 2

A FREE Monthly Newsletter for Substance Abuse and Opioid Treatment **Programs from San Diego Reference Laboratory** 

TOXICOLOGY

February, 2017

## **Opioid Receptors and Mood**

Dr. Edward Moore, Medical Director

Opioid drugs, typified by morphine, produce their pharmacological actions, including analgesia, by acting on receptors located on neuronal cell membranes. Neurons are made up of nerve ending or axon (presynaptic), a gap (synapse), and a target cell where the receptor resides (postsynaptic). The opioids have their effect at the presynaptic end of the nerve junction and act to inhibit the release of the neurotransmitter. This action is the major effect of the opiates on the nervous system.

Opioid drugs hijack a complex neuromodulator system composed of three receptors, mu, delta and kappa, which interact with a family of endogenous opioid peptides known as β-endorphin, enkephalins and dynorphins. Opioid receptors form a subfamily of Gprotein coupled receptors, which also includes the non-opioid nociceptin/ orphanin FQ receptor. Both receptors and peptides are expressed throughout

Dr. Joseph E. Graas, Scientific Director peripheral and central nervous systems, comorbidity, and may have broader and have been the subject of intense investigations. Opioids play a central role in pain processing and regulate many other aspects of physiology, such as stress responses, respiration, and gastrointestinal transit, in addition to endocrine and immune functions. The mood-regulating properties of endogenous opioids represent another main aspect of opioid physiology. The potent euphoric effects of known opioid drugs like heroin, and the high density of peptides and receptors in limbic brain areas, set the opioid system as a central player in both reward processing and mood control, and a feasible target to treat emotional dysfunction.

> Today, opioids are beginning to be considered for the treatment of major diseases of depression (MDD). Agonists such as buprenorphine are used in the specific contexts of hard or impossible to manage depression (refractory depression) and depression-addiction their brains have been subjected to.

indications. In summary, kappa (dynorphin) agonists and delta (enkephalin) antagonists have promising antidepressant potential, and both dynorphin and kappa drugs are under development. In contrast, data from mu (endorphin) analysis appear more complex. Endorphins, enkephalins and dynorphin appear as important and highly distinct players in the regulation of emotional states. Animal studies show that dynorphin improves mood states acutely, enkephalins decrease mood after stress, and endorphins exert contrasting effects on mood. In the future we will no doubt see a whole new class of antidepressants based on the regulation of the opioid neurotrans-The clinical implications of mitters. this area of research will help clinicians in addiction treatment to better understand the behavior of clients. Those treated are deserving of an empathic treatment based on a better understanding of the neurochemistry which

| Receptor   | Function                                                                                                                                                |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| delta (δ)  | analgesia, antidepressant effects, convulsant effects, physical dependence, modulate µ-<br>opioid receptor-mediated respiratory depression              |
| kappa (κ)  | analgesia, anticonvulsant effects, depression, dissociative/hallucinogenic effects, diure-<br>sis, dysphoria, miosis, neuroprotection, sedation, stress |
| mu (μ)     | analgesia, physical dependence, respiratory depression, miosis, euphoria, re-<br>duced GI motility, physical dependence, possible vasodilation          |
| Nociceptin | anxiety, depression, appetite, development of tolerance to µ-opioid agonists                                                                            |
| zeta (ζ)   | tissue growth, embryonic development, regulation of cancer cell proliferation                                                                           |

Toxicology Times © 2017 San Diego Reference Laboratory.